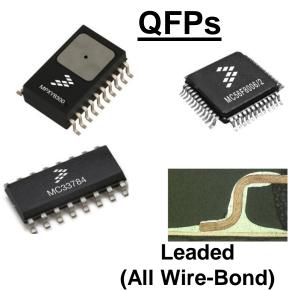
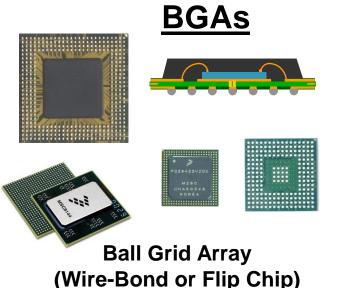


Oxide Thickness and Solderability Methodology to Determine Long Term Storage of BGAs and QFPs

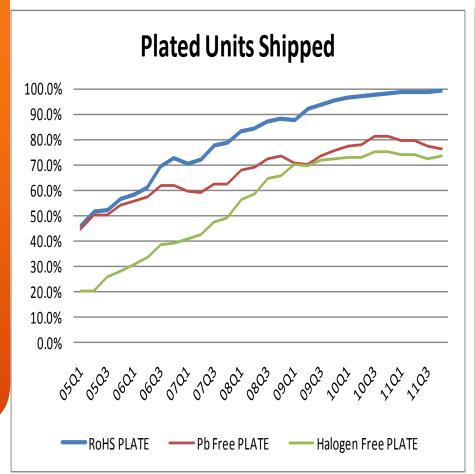
Rama Hegde Senior Member of Technical Staff Global Quality Austin, Texas, USA

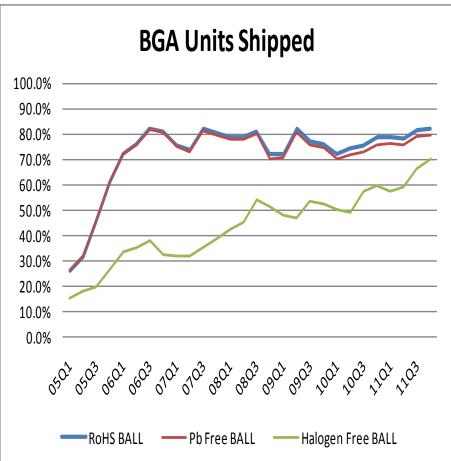
June 13, 2012
Presentation for
CTEA Symposium


Agenda


- Background and Motivation
- Dry Pack Storage
- Sample (BGAs and QFPs) History
- Component Aging
- Oxide Thickness Measurement
- Solderability Methodology
- Testing Results
- Conclusions
- Recommendations

Background and Motivation


- Long-term storage of BGA & QFP products may be required due to:
- Fab and assembly factory transfers
- Product obsolescence requiring customers make lifetime/EOL purchases
- Providing extended service (10+ years) on vehicles
- Other program needs
- Integrity of EOL products in terms of solderability needs to be verified
- Per customer queries a study was performed on various packages to assess oxide growth and solderability
- To support customers with data on use of EOL products beyond 2 years



Background and Motivation (Cont.)

- As part of the 2006 WEEE Directive, Freescale transitioned most products to Pb-free, Sn-based finishes in 2006
- As of Q3 2011, 70-80% of packages are Pb-free
- Pb-containing products shipping to customer with exemptions

Dry Pack Storage

- Freescale products generally shipped in ESD dry pack bags
- Examples of JEDEC trays and reels in dry pack bags

JEDEC Trays in Tightly Sealed Dry Pack

Product Reel with Potentially Compromised Dry Pack

Sample History for BGAs and QFPs

- Samples of multiple package types and lead finishes with history were obtained from various sources and storage conditions
 - BGAs with SnPb and Pb-free spheres
 - LQFPs with Pb-free plating
 - Assembly years ranging from 1996 through 2005
- Samples were still in original packaging in most cases
- All samples processed through MSL bake (125°C/16hrs) prior to testing to ensure parts were dry
- Additional component aging carried out using:
 - Baking => 150°C/16hrs
 - Steam Aging => 8hrs (97°C/100% humidity)
- Oxide thickness measurements using Auger (AES) and solderability testing were performed on all samples

Sample History for BGAs and QFPs

Storage History | Sphere / Plating Comp

Matte Sn

Matte Sn

MSL Bake

Steam Age

MSL Bake

Steam Age

Type	Туре	Assembled	Storage History		Aging Performed
Mamaru 440 DDCA 40		1996	Non-dry Packed Trays / FSL Office	C nDh∧a	MSL Bake
Memory	119 PBGA 1996		Environment	SnPbAg	Steam Age
Automotive	motive 272 DDC A 2002 Dry Packed / 3rd CnDb A c	C nDh∧a	MSL Bake		
Microcontroller 272 PBGA		2003	Party Storage	SnPbAg	Steam Age
Network Processor	516 PBGA	2003	Dry Packed / 3 rd Party Storage	SAC387	MSL Bake
					150°C Bake
					Steam Age
Multimedia Apps	Trays / FSL	2005	Non-dry Packed	SAC105	MSL Bake
Processor		Environment	,e SAC103	Steam Age	
Network Processor	357 PBGA	2002	Dry Packed / FSL	SAC405	MSL Bake
					150°C Bake
					Steam Age
DSP	144 LQFP	2003	Dry Packed / 3 rd Party Storage	Matte Sn	MSL Bake
					Steam Age

Dry Packed / 3rd

Party Storage

Dry Packed / 3rd

Party Storage

Package

80 LQFP

64 LQFP

FSI Product

DSP

Automotive

Microcontroller

Year

2004

2004

Component Aging

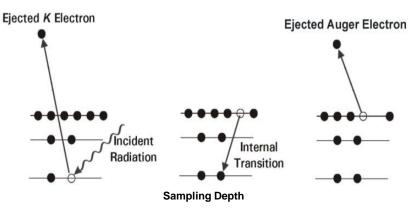
Two ways to age:

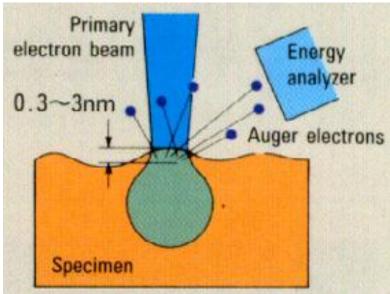
Baking = 150°C/16hrs in air Steam Age = 8hrs (97°C/100% humidity)

MSL Bake (125°C/16hrs) => moisture removal bake not part of aging, but included in this study on all parts

Bake Oven

Steam Ager



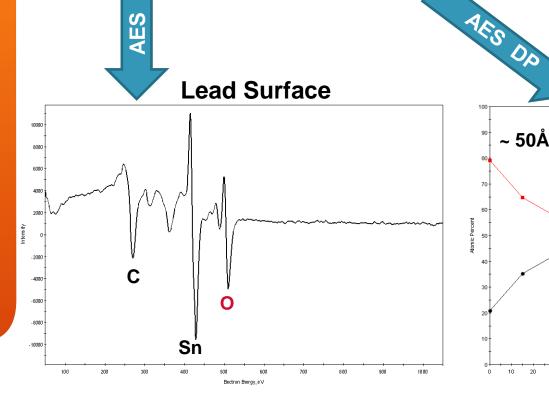

Oxide Thickness Measurement by AES Depth Profiling

Background:

- ► AES (Auger Electron Spectroscopy)
- ► AES is sensitive to top most surface layers of sample due to low electron mean free path in solids
- ► Elemental identification of top 3-5 atomic layers on samples
- ▶ Depth Profile Analysis can be used to measure thickness and stoichiometry of surface films
- ► Focused electron beam allows analysis of areas as small as 100 nm
- **▶ SEM imaging capability**

Auger Electron Process

Oxide Thickness Measurement (Cont.)



AES Depth Profiling of Plated Lead:

Involves analyzing the surface, sputtering away material & then re-analyzing

Example with ~ 50Å SnO_x on the Lead

(Oxide thickness number based on SiO₂ sputter rate)

Depth Profiling (DP) of Lead Solution 100 Solution 100

Results: AES Oxide Thickness Measurements

2					
FSL Product Type	Package Type	Year Assembled	Sphere / Plating Comp	Component Aging	Oxide Thickness (Å by AES DP
Momony				MSL Bake	~ 20
Memory	119 PBGA	1996	SnPbAg	Steam Age	~ 70
Automotive	272 PBGA	2003	SnPbAg	MSL Bake	~ 20
Microcontroller				Steam Age	~ 30
				MSL Bake	~ 20
Network Processor	516 PBGA	2003	SAC387	150°C Bake	~ 40
				Steam Age	~ 200

SAC105

SAC405

Matte Sn

Matte Sn

Matte Sn

2005

2002

2003

2004

2004

Multimedia Apps

Processor

Network Processor

DSP

DSP

Automotive

Microcontroller

280 MAP

357 PBGA

144 LQFP

80 LQFP

64 LQFP

MSL Bake

Steam Age

MSL Bake

150°C Bake

Steam Age

MSL Bake

Steam Age

MSL Bake

Steam Age

MSL Bake

Steam Age

~ 40

~ 70

~ 20

~ 40

~ 80

~ 40

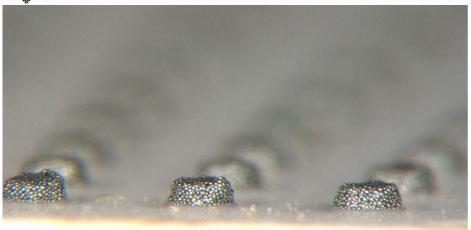
~ 60

~ 30

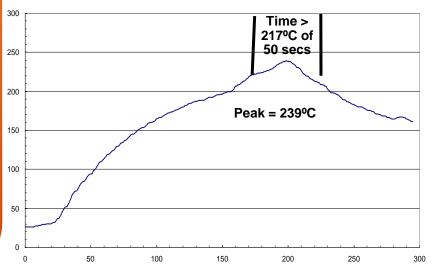
~ 60

~ 30

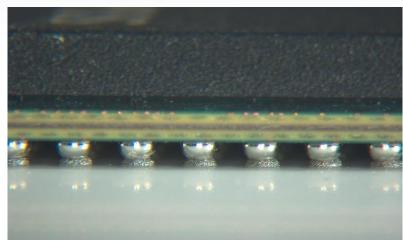
~ 60


Solderability Testing Techniques

- ► There are three basic types of solderability testing:
 - Dip and look which uses liquid flux and a solder pot
 - Surface mount simulation (ceramic plate test) which uses a stencil that matches the component, unmetallized ceramic plates and a reflow furnace
 - Wetting balance which uses liquid flux and a specialized solder pot
 - Wetting balance has been a "Test without Established Accept/Reject Criterion" and is for "evaluation purposes only"
- ► Industry specs that cover solderability testing are:
 - JESD22-B102D "Solderability"
 - IPC/EIA J-STD-002B "Solderability Tests for Component Leads, Terminations, Lugs, Terminals and Wires"
- ▶ Of the three types, the surface mount ceramic plate test is the only appropriate test for BGAs
 - Also recommended as an alternative to dip and look for fine pitch gull wing lead spacing <0.51 mm



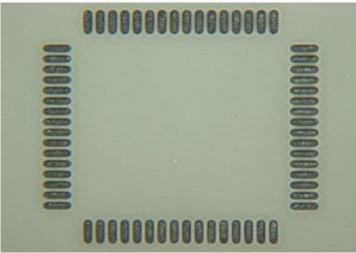
Solderability Test for BGAs


Using Surface Mount Simulation (Ceramic Plate Test)

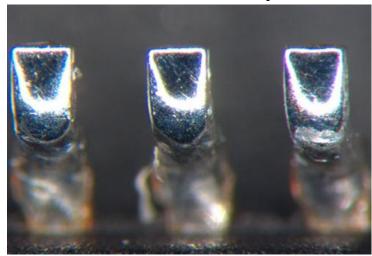

Step 1 - Print SAC387 Solder Paste

Step 3 - Reflow PBGA (Pb-Free Shown)

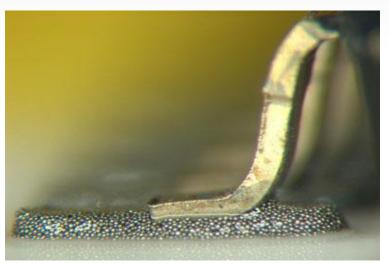
Step 2 - Place PBGA into Paste



Step 4 - After reflow



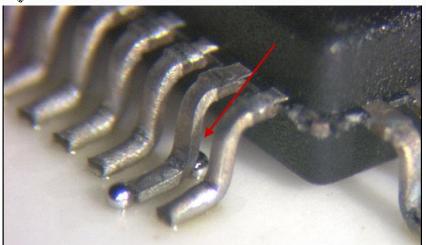
Solderability Test for QFPs


Using Surface Mount Simulation (Ceramic Plate Test)

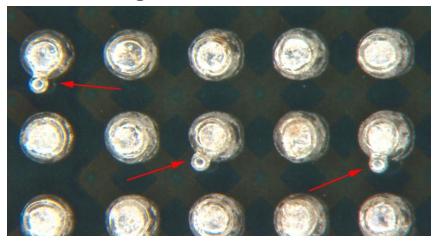
150um Thick Solder Paste Applied to the Ceramic Coupon

Bottom of QFP Leads Showing Full Wetting

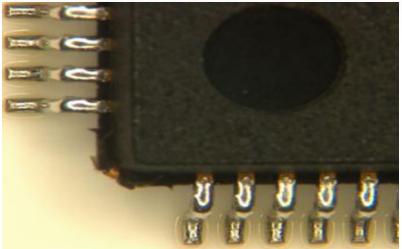
QFP Lead in Paste, Prior to Reflow

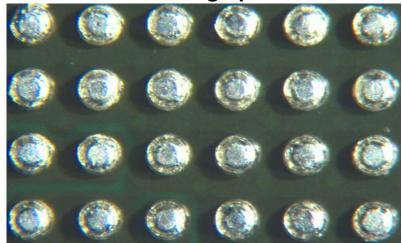


QFP Lead That Fully Wet



Solderability Test - Examples


Fail Pass


Solder Balling Indicating Non-Wetting at the Foot on a QFP

Flipped PBGA Where Applied Solder Did Not Completely Wet the Spheres

Applied solder showing good Wetting up Lead

Flipped PBGA Where Applied Solder Completely Wet the Spheres

SAC387

SAC105

SAC405

Matte Sn

Matte Sn

Matte Sn

150°C Bake

Steam Age

MSL Bake

Steam Age

MSL Bake

150°C Bake

Steam Age

MSL Bake

Steam Age

MSL Bake

Steam Age

MSL Bake

Steam Age

~ 50

~ 200

~ 40

~ 70

~ 20

~ 40

~ 80

~ 40

~ 60

~ 30

~ 60

~ 30

~ 60

Pass 0/20

Fail 9/20

Pass 0/20

Pass 0/20

Pass 0/20

Pass 0/20

Fail 4/20

Pass 0/20

Pass 0/20

Pass 0/20

Pass 0/20

Pass 0/20

Pass 0/20

	Results: Ceramic Plate Solderability					
FSL Product Type	Package Type	Year Assembled	Sphere/ Plating Comp	Aging	Oxide (Å) by AES	Solderability Results
Memory	119 PBGA	1996	SnPbAg	MSL Bake	~ 20	Pass 0/20
				Steam Age	~ 70	Pass 0/20
Automotive				MSL Bake	~ 20	Pass 0/20
Microcontroller	272 PBGA	2003	SnPbAg	Steam Age	~ 30	Pass 0/20
				MSL Bake	~ 20	Pass 0/20

2003

2005

2002

2003

2004

2004

Network Processor

Multimedia Apps

Processor

Network Processor

DSP

DSP

Automotive

Microcontroller

516 PBGA

280 MAP

357 PBGA

144 LQFP

80 LQFP

64 LQFP

Results: Oxide Thickness Vs. Solderability

Oxide Thickness (Å) Data	Solderability Results
~ 20	Pass 0/20
~ 70	Pass 0/20
~ 20	Pass 0/20
~ 30	Pass 0/20
~ 20	Pass 0/20
~ 50	Pass 0/20
~ 200	Fail 9/20
~ 40	Pass 0/20
~ 70	Pass 0/20
~ 20	Pass 0/20
~ 40	Pass 0/20
~ 80	Fail 4/20
~ 40	Pass 0/20
~ 60	Pass 0/20
~ 30	Pass 0/20
~ 60	Pass 0/20
~ 30	Pass 0/20
~ 60	Pass 0/20

- A correlation found between oxide thickness & solderability
- Oxide thickness below ~ 80Å all resulted in good solderability

Conclusions and Recommendations

- Oxide thickness following MSL bake only ranged from 20 to 40Å
- BGAs as old as 1996 (non-dry packed) and 2002 (dry packed) for SnPb and Pb-free, respectively, showed good solderability following the MSL bake
- QFPs as old as 2003 showed good solderability results following MSL bake and steam aging
- The only solderability failures observed were on two of the three Pb-free BGAs that were subjected to steam aging
- · These were the only parts with oxide thickness measured at 80Å and above
- Steam aging may be an invalid solderability acceleration of proper dry package storage for Pb-free BGAs
- Overall, good solderability following extended storage (10+ years) is achievable
- This can give customers confidence when carrying out an EOL purchase
- Proper storage with good dry package integrity is always recommended
- This study is not intended to extend or modify the terms of FSL's warranty

Acknowledgements

- Author would like to thank Andrew Mawer, Terry Burnette and Cheryl Lednicky for the technical support
- Also, author would like to thank Global Quality (Jim Baillie, Ed Hall and Garic Power) for the management support

Contact information:

Rama.Hegde@freescale.com (512)895-6592

